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STABILITY IN THE CASE OF A NEUTRAL LINEAR APPROXIMATION

A. M. MOLCANOV

As is known, linearization is the basic method of studying the stability of singular points of 5
system of ordinary differential equations. The linearized systems can be decomposed, in general, igg,
three kinds of components: stable, neutral, unstable. If an unstable component is present the questigy
of stability is decided negatively regardless of the other components. In the presence of only one
stable component the original system is found to be stable. The proof of this assertion is the concern
of Lyapunov’s stability theory. If besides a stable one there is also a peutral component, the question
remains open.

Without loss of generality we can consider that only a neutral component is present, since the
general case can be reduced to this more simple case in the following simple way, We assume that jn
the original system all the variables belonging to stable components are zero. There results a “‘re-

duced’’ system having only neutral components. It can be showa that if the *

‘reduced’’ system turns
out to be stable, then the original system is also stable. The basic difficulty in the study of a sys-
tem with a neutral component is that the motion near the singular point is almost periodic in the prin-
cipal term, while stability or instability becomes apparent only in subsequent approximations.
Therefore to settle the question of stability it is necessary to carry out the subdivision of motions

[1] and to eliminate the basic motion. Let us investigate a system having the form
di
== Ulw), )
dt

and assume that u = 4, = constant is the solution of system (1). Translating the origin of coordinates
to the point u,, we consider u = u, + ex for small values of the parameter ¢ which corresponds to

small neighborhoods of u, in the original variables. System (1) in the new variables has the form

2
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Here 4, A, A,,++ are homogeneous polynomials respectively of the first, second, third, etc. degrees.
According to the basic assumption the matrix 4 has pure imaginary eigenvalues. We apply the scheme

of subdivision of motions to system (2). This implies that we must introduce the change of variables
- ( ¢ (x) €)
y=x+ed; x)+-2—!sz doeee
so that the new system
dy é
—g—;z A(y)'l"fBl(y) +‘2"!' Bz(y)+ “e

permits subdivision of motions. In [1] it is shown that the functions Q, and B canbe computed fro®
the formulas
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In these formulas f= f(y, ) is the solution of the unperturbed equation 9f/dt = A(f) satisfying
the initial condition f(y, 0) = y. The function C,, can be computed if we already know B, 15 Opeye
For example, Cy(x) = 4,(x), C(%) = A(x) +2[(dQ,/dx) 4, ~ (dB;/dx) O]~ (d* 4/dx?) @, Q,, etc.
In our case it is not difficult to show that when 4 is a homogeneous polynomial of degree (n + 1),
the functions Cn’ B,, Q, are also homogeneous polynomials of degree (n + 1) in their own respective
arguments.

The function B n(y) is of fundamental interest to us since it determines the stability of the system.
The simplest form of this function is obtained when the matrix A is diagonal. Since matrix A by hy-
pothesis has pure imaginary eigenvalues, both the variables and the coefficients of the equations are
necessarily complex numbers. The coefficients are not, of course, arbitrary complex numbers, because
the system is obtained from a real system. If we denote by the variable x¢ “* the complex conjugate of
£%, it is easy to see that the coefficients satisfy conditions of the type Aﬁ* $ = Aﬁy Analogous
equalities hold for the coefficients of the polynomials B, C and 0.

Let us denote by iw, the eigenvalues of matrix 4 and observe that
Q)a* = - (L)a. (7)

For a diagonal matrix the computations in formula (5) are not difficult to carry out to the end, In
fact, in this case the solution f(y, t) has the form f*=y%exp (iwa_t). Substituting in (5) we find

BﬁyyﬁyY =

(and equal to unity) only if the inequality

ng yﬂy’)’ lim fg' exp(iz (coﬁ + o, = wa)) dt. But the resulting limit is different from zero
T‘—)W

vy~ (0g+ @) =0, (8)

is satisfied, which it is natural to call the condition of internal resonance of the second order. In

exact analogy, when we compute B, only those terms will remain for which we have resonance of the
third order

w, ~ (0g+ @, +wg) = 0. )

We note that in any system there is necessarily resonance of the third order. In fact, setting
B=a,d= y* we see that (9) follows from (7). Resonance of the second order is another matter: as a

tule it is absent. This important conclusion can be formulated more precisely in the following way.

Let us consider a system containing a parameter. In this case the fundamental frequency of the

system is w, and hence the combinative frequencies WapByr Pafys (the right hand sides of (8) and (9))

are functions of this parameter. Certain of these combinative frequencies, namely Dgaryy*r

for all values of the parameter, This is trivial resonance of the third order. Other frequencies of the

equal zero

second order, in particular W@oBy s reduce to zero only at isolated points, determining the critical val-
ues of the parameter., The very interesting question of the passage of the system through such critical
States (in particular for a zero root of matrix 4, when (8) follows from (7)) is not studied here. The
present note deals with the analysis of the general case when the system has no resonances except
the trivial one. Then, the case reduces to the study of a system of equations of the form (where sum-
Wation is to be carried out only over the index a):
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where Ea.ﬁ =~ (2/21) (BZ,B/G* + BZ: ,8,8*)' This system can be obtained from (4) if instead of yk we
k(Z

(10)

introduce a new variable qk by the formula qk = |y*|¢ = yk yk *, and have half as many equations ag
(4). The question of the stability of system (4) thus reduces to the question of the stability of systen
(10) in the cone nk > 0.

Note in this connection one essential property of system (10). If somehow the variable qk equals
zero for t = f; then it is equal to zero identically; this follows easily from the form of system (10),
Therefore, in particular, any variable maintains its sign for all values of f. If we assume that all the
variables except one are equal to zero, then it is not difficult to obtain the necessary stability condi-
tion

Ep. > 0. (11)

The positive-definite, symmetric part of matrix £ B

(Eoge)

is the simplest sufficient condition for stability, This assertion is easily shown by adding together
all the solutions of system (10).

Let us pass to the establishment of the necessary and sufficient conditions. As in linear systems,
the invariant paths of the system, i.e., the solutions of the form qk = 1;’5 7(#), are important in the
formulation of the stability criterion, Substituting these expressions into (10) we have

M B mO)=1, )

e [Ewam— E] = 0. (14)

Here I is a parameter analogous to an eigenvalue in linear systems. However, the magnitude of this
parameter, in view of its proportionality to the length of the given initial vector 7, is of no impor-
tance whatsoever. As is evident from equation (13), it is the sign of E that is important since it de-
termines stability.

The method of finding all the invariant paths of system (10) is suggested by the form of system
(14). At first we retain in every one of the equations only the second factor. There results the basic
system of linear equations

Eponl = B (15)

If the mawix E, B is not degenerate, then for any value of the parameter E system (15) has a
unique solution. These solutions fill out the invariant curve consisting of two paths, the stable one
(E > 0) and the unstable one (E < 0). However, if the matrix is degenerate, the solution exists only
for E = 0, and then it is determined to within a proportional factor. Again we have an invariant path,
this time neutral. All solutions of the nonlinear system (14) can be obtained by retaining in every
equation either the first or the second factor, Therefore, altogether 2" solutions are obtained, includ-
ing those considered above and the trivial one: qk = 0, It is easy to see that this procedure cotresponds
sponds to an independent study of system (10) on all possible surfaces of the cone 1]" > 0. An under-
standing of the invariant paths permits the formulation of

The stability criterion. For system (10) tobe stable in the cone 7]1«: > 0 it is necessary and suf-

ficient that there not be a single neutral or unstable path inside and on the boundary of the cone.
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The necessity is obvious.

As in linear systems, sufficiency can be proved by constructing a Lyapunov function, We indicate

a guide to the idea of this construction. Rewrite system (10) in the form d In qk/ dt=—-E ka”a" Now
multiply both sides of every one of the equations by z; and add all the n equations. We obtain the
gelation
d
b®_ v, (16)
dt

Here we introduce the notation

n®=2zln0, ¥ =3lme, L= DEut
k 3 I3

For the fulfillment of the conditions of the criterion we can show that there exists a positive 2 ,
to which cortesponds a positive o» The resulting function ® cannot be used as a Lyapunov function
only because it vanishes on the boundary of the positive cone, This defect can be corrected by adding
to @ a bounded Lyapunov function (of sufficiently small weight so as pot to spoil the negative def-
initeness of its derivative). We assume that the existence of a Lyapunov function of smaller dimension
has been proved (by induction).

In conclusion we analyze [2] a system of four equations (two degrees of freedom in the theory of
oscillations). In this case equation (10) can be integrated by quadrature. By changiag the scale it is
possible to make E; =1, E,, = 1. Therefore this system generates a two-parameter family which
can be mapped by points on the plane (a, B) where a= Eip B=Ey;.

It is not difficult to show that unstable systems lie below the negative branch of the hyperbola
a3~ 1= 0. Above the line a + 8+ 2 = 0 lies the region of monotonic stability. Formally, between
these curves lie the stable systems the solutions of which can, however, increase before they begin
to decay. The degree of *‘upswing’’ in this system (i.e., the possible initial increase in the oscilla-
tion amplitude) can be roughly estimated from the number |a| + |B|. It is clear that if the ‘‘upswing’’
is large the system is unstable for all practical purposes.

For a system with two frequencies it is not difficult to construct immediately a linear Lyapunov
function in the variables 71> Ny Therefore, together with one-frequency systems, we can use as a

starting point the proof by induction for geperal systems,
Received 23/MAY /61
BIBLIOGRAPHY

[1] A. M. Moi¢anov, Dokl. Akad. Nauk SSSR 136 (1961), 1030 = Soviet Math. Dokl. 2 (1961), 162.
[2] 1. G. Malkin, Prikl. Mat. Meh. 15 (1951), 575.

Translated by:
N. H. Choksy

1381



